Description
An unprecedented wealth of data is being generated by genome sequencing projects and other experimental efforts to determine the structure and function of biological molecules. The demands and opportunities for interpreting these data are expanding rapidly. Bioinformatics is the development and application of computer methods for management, analysis, interpretation, and prediction, as well as for the design of experiments. Machine learning approaches (e.g., neural networks, hidden Markov models, and belief networks) are ideally suited for areas where there is a lot of data but little theory, which is the situation in molecular biology. The goal in machine learning is to extract useful information from a body of data by building good probabilistic models — and to automate the process as much as possible. In this book Pierre Baldi and Sren Brunak present the key machine learning approaches and apply them to the computational problems encountered in the analysis of biological data.The book is aimed both at b
Reviews
There are no reviews yet.